Observed cosmic rays may have come from two-million-year-old supernova

supernovacos
This illustration of the region surrounding our Solar System shows the estimated location of the two-million-year-old supernova, lying close to the galactic magnetic field, that may have been the source for some high-energy cosmic rays observed today. Credit: Michael Kachelrieß, Norwegian University of Science and Technology (NTNU)

(Phys.org)—High-energy protons, nuclei, and other particles are constantly showering down on Earth’s atmosphere from space, but the origins of these cosmic rays is unknown. One possibility is that the cosmic rays come from supernovae, although the evidence for this claim is limited. Now by analyzing the cosmic ray energy spectrum, scientists have been able to deduce that some high-energy cosmic rays may have originated from a two-million-year-old supernova located roughly 100 trillion miles away.

The existence of such a is also intriguing because, in unrelated work, a supernova of the same age and distance has been proposed as the source of rare iron isotopes buried in the Earth’s ocean crusts. The two different sets of data—cosmic rays and iron isotopes—both seem to point to the same exploding star as their source.

The scientists, Michael Kachelrieß, et al., have published a paper on the signatures of supernova in cosmic ray spectra in a recent issue of Physical Review Letters.

As the researchers explain, it’s difficult to extract information about the sources of cosmic rays from observations. This is partly because the galactic magnetic field that permeates empty space interferes with the cosmic ray trajectories, which makes the cosmic ray energy intensity nearly uniform. In addition, there are likely multiple sources of cosmic rays, and the signals from all of these sources overlap in the cosmic ray spectrum, which makes it difficult to extract signatures of individual sources.

Despite these challenges, the researchers explain that the cosmic ray energy spectrum may still have some “memory” of individual sources, which could be encoded in small features. The researchers specifically focused on some of the puzzling features, such as why there are more than expected positrons (antielectrons) above a certain energy level. While these features appear puzzling from the standard perspective of cosmic rays and are often ignored, accounting for them is key for identifying the supernova as a cosmic ray source.

MORE of the story / click image TOP of PAGE