“Halos” of Cosmic Rays and Magnetic Fields More Common Than Previously Thought

Halos-of-Cosmic-Rays-and-Magnetic-Fields-of-Galaxies-More-Common-Than-Previously-Thought
ENLARGE > Composite image of an edge-on spiral galaxy with a radio halo produced by fast-moving particles in the galaxy’s magnetic field. In this image, the large, grey-blue area is a single image formed by combining the radio halos of 30 different galaxies, as seen with the Very Large Array. At the center is a visible-light image of one of the galaxies, NGC 5775, made using the Hubble Space Telescope. This visible-light image shows only the inner part of the galaxy’s star-forming region, outer portions of which extend horizontally into the area of the radio halo.

Newly published research from the CHANG-ES consortium reveals that “halos” of cosmic rays and magnetic fields above and below the galaxies’ disks are much more common than previously thought.

An international team of astronomers used the Karl G. Jansky Very Large Array (VLA) to study 35 edge-on spiral galaxies at distances from 11 million to 137 million light-years from Earth. The study took advantage of the ability of the VLA, following completion of a decade-long upgrade project, to detect radio emission much fainter than previously possible.

“We knew before that some halos existed, but, using the full power of the upgraded VLA and the full power of some advanced image-processing techniques, we found that these halos are much more common among spiral galaxies than we had realized,” said Judith Irwin, of Queen’s University in Canada, leader of the project.

Spiral galaxies, like our own Milky Way, have the vast majority of their stars, gas, and dust in a flat, rotating disk with spiral arms. Most of the light and radio waves seen with telescopes come from objects in that disk. Learning about the environment above and below such disks has been difficult.

“Studying these halos with radio telescopes can give us valuable information about a wide range of phenomena, including the rate of star formation within the disk, the winds from exploding stars, and the nature and origin of the galaxies’ magnetic fields,” said Theresa Wiegert, also of Queen’s University, lead author of a paper in the Astronomical Journal reporting the team’s findings. The paper provides the first analysis of data from all 35 galaxies in the study.

To see how extensive a “typical” halo is, the astronomers scaled their images of 30 of the galaxies to the same diameter, then another of the authors, Jayanne English, of the University of Manitoba in Canada, combined them into a single image. The result, said Irwin, is “a spectacular image showing that cosmic rays and magnetic fields not only permeate the galaxy disk itself, but extend far above and below the disk.”

The combined image, the scientists said, confirms a prediction of such halos made in 1961.

 

MORE of the story / click image TOP of PAGE