Can science-based video games help kids with autism?

TIM SMITS FOR SPECTRUM

Originally published on Spectrum

The Research on Autism and Development (RAD) Laboratory is located in a Tetris-like maze of brown wooden buildings, not far from the main campus of the University of California, San Diego. The lab itself is a nondescript warren of small beige rooms. But everything else about it is extraordinary.

The first clue is a T-shirt one of the lab’s young interns wears on this sunny day in April, featuring the RAD Lab’s motto: “We play mind games.” One of the newer recruits, 20-year-old Naseem Baramki-Azar, sports a “Super Mario Bros.” shirt. A half-dozen other lab members huddle around computer screens displaying none of the usual fare of charts or spreadsheets: Instead, they’re hard at work making cartoon moles pop out of molehills, or fat spaceships careen toward the top of a computer screen.

The lab’s director, Jeanne Townsend, and associate director, Leanne Chukoskie, periodically poke their heads in to check on the progress. The two women, a generation apart, are a study in contrasts. Townsend is reserved, with dark-framed square glasses; Chukoskie is a fast-talker with a California blond ponytail. But they finish each other’s sentences when they talk about their quest: to develop video games that can help children with autism.

The project has stretched the two neuroscientists in unfamiliar directions. “I find myself doing a lot of computer science these days,” Chukoskie says. They are also fledgling entrepreneurs. Last year, they launched a startup, BrainLeap Technologies, also based in San Diego. That step, Chukoskie says, filled her with a mix of unenthusiastic “eh” and dread-filled “ugh.” Despite their discomfort, these two scientists are part of a growing cadre braving video-game development in search of novel therapies for autism.

The idea has obvious appeal: Boys with autism spend almost twice as much time playing video games as typical boys do. And many common game features — including predefined ‘roles’ and goals, and a repetitiveness between levels — seem to mesh well with autism traits, such as social difficulties and a preference for routine, says Micah Mazurek, associate professor of education at the University of Virginia in Charlottesville. “If we are finding that kids with autism are especially drawn to technology,” Mazurek says, “why not try to leverage that interest to design interventions?”

One reason not to is that some ‘serious games’ — those designed for purposes other than mere entertainment, such as imparting practical skills — have drawn serious criticism, or worse. For example, the U.S. Federal Trade Commission slapped a $2 million fine on San Francisco, California-based Lumos Labs in 2016 for falsely advertising “that training with the Lumosity Program reduces cognitive impairment associated with health conditions.” Another barrier is that the gaming industry works with bigger budgets and faster timelines than research labs typically do, making it difficult for the latter to be competitive. Some researchers, such as Townsend and Chukoskie, have taken the entrepreneurial route anyway, but others have sought partnerships with game developers or treat their explorations as a purely academic exercise.

Over the past year, several small pilot studies have produced promising results for games designed to help children with autism, showing that they may improve a range of abilities — including balance, attention and gaze control. The creators of those games are working to prove that those gains persist and translate into real-life benefits. In gaming lingo, they are trying to ‘level up.’

If they succeed, it would be a welcome change to the current state of play. A directory compiled by the advocacy organization Autism Speaks lists more than 700 apps, games and other digital resources intended for people with autism or their families, but only around 5 percent of those have scientific data backing their effectiveness.

“My wife and I have downloaded apps, some of them free, some of them 99 cents, that are really professing to be for kids on the spectrum — and there’s nothing there of any substance,” says Erik Linstead, assistant professor of computer science at Chapman University in Orange, California. Linstead says he became interested in building games and other digital resources for autism when his daughter was diagnosed with the condition in 2012. He has since created several applications. “People know, especially with [autism], that parents are desperate to do anything they can to help their kids, and so they label these things as assistive technologies for autism or whatever,” he says. But often, “they’re poorly built; they’re poorly maintained.”

Level 1: Gamify

The power of gamification resonates with James Tanaka, a cognitive psychologist at the University of Victoria in Canada. In the mid-2000s, Tanaka helped develop a series of seven ‘mini-games’ aimed at helping children with autism recognize faces and interpret expressions. Designing games wasn’t the initial plan, Tanaka recalls, but he and his collaborators learned to modify their approach. “If you want an effective intervention, you’d better gamify it; you’d better make it fun for kids,” he says.

The series they developed — called “Let’s Face It!” — was one of the first games for autism to show improvements in a randomized controlled trial, and is still influential in the field. In the trial, 42 children with autism who played the games for 20 hours got better at recognizing facial expressions and at related tasks. But the research world can move slowly, and years passed between the game’s development and publication of its clinical trial results — during which time its aesthetic, user interface and system requirements had significantly aged by industry standards.

Tanaka has continued to work on video games to help people with autism, including an iPad app spinoff of “Let’s Face It!” and a “Pac-Man”-inspired game to teach children with autism to make facial expressions, potentially easing their characteristic flat affect. But his ambitions in this realm are modest. To make a game or app for autism that really succeeds in the market, he says, “you really have to have the resources; you really have to know what you’re doing.”

Fast-paced advances in technology are helping to fill in some of the financial and knowledge gaps. Since Tanaka’s first efforts, game design has become quicker and cheaper, in part thanks to open-source software. More sophisticated gaming systems have also opened up possibilities. For the RAD Lab, the tipping point in the move into video games came with the availability of affordable, consumer-grade eye trackers around five years ago. The gaming industry wanted to incorporate eye-trackers into virtual-reality headsets. Townsend and Chukoskie saw a chance to track and train children’s attention.

Townsend’s work over three decades has focused on problems with attention. She has documented how people with autism often have trouble shifting their attention — for example, moving their gaze to a new object. They also struggle to make rapid eye movements, known as saccades, as smoothly and accurately as typical people do. “Obviously, that interferes massively with social interactions, which are very dynamic,” Townsend says. If your eye jumps to the wrong place at the wrong time, you are liable to miss subtle social cues.

MORE of the story and 2 supporting images / click image TOP of PAGE