Catalyst Produces Useful Hydrocarbons While Removing CO2

In the improved electrolyzer, the reaction happens in a thin layer that combines a copper-based catalyst with Nafion, an ion-conducting polymer. The unique arrangement of these materials provides a reaction rate 10 times higher than previous designs.
Credit: U of T Engineering / Daria Perevezentsev

Water is split into hydrogen and oxygen by electrolysis, but if CO2 is also added to the mixture, compounds can be generated to make textiles, diapers and even spirits. American scientists, led by a Spaniard, have developed a catalyst that accelerates this reaction, while also removing a greenhouse gas.

A team of researchers from Canada and the U.S. has developed a catalyst that quickly and efficiently converts carbon dioxide into simple chemicals. In this way, they transform the most important greenhouse gas into useful products for industry.

“The technology of water electrolyzers is well known: they transform water and electricity into hydrogen and oxygen, but in our case, we add COto the cocktail and, instead of producing hydrogen, we can generate various hydrocarbons, such as ethylene, which is the most widely used organic compound worldwide,” researcher F. Pelayo García de Arquer, of the University of Toronto (Canada), has told SINC.

“Thus,” he explains, “we can obtain raw materials for the manufacture of products such as construction materials, textiles, paints, electronic device components, diapers… or even spirits.”

The key to the new device is a polymer coating that facilitates the transport of CO2 through the surface of the metal or electrode of the catalyst. Carbon dioxide, generally speaking, has difficulty penetrating aqueous solutions and reaching the entire surface of this material; so when the flow of electrons (electric current) is increased to carry out the reaction, there is not enough CO2 to be transformed.

But the authors, who have published their study in Science magazine, show that this limitation can be overcome: “We have discovered that a certain configuration of ionomers (polymers that conduct ions and water to the catalyst) allows us to considerably increase the ease with which CO2 is distributed along the catalytic surface, thus allowing us to achieve higher productivity,” García de Arquer points out.

This ionomer coating contains hydrophobic (water-repellent) and hydrophilic (water-attracting) parts and is grouped together to form an ultra-thin layer of about 10 nanometers that helps to maintain the reaction where, from the CO2 gas and the hydrogen in the water (H+ protons), the hydrocarbon is built.

More than one ampere per cm2

“About two years ago, CO2 electrolysis systems were limited to electrical outputs or currents of tens of milliamps per square centimeter, meaning that only a few molecules of this gas can be transformed into something useful,” says the researcher, “but our discovery allows them to operate at currents a hundred times higher, more than one ampere per square centimeter. In this way, many more COmolecules can be transformed, reaching activities that were unthinkable a few years ago.”

MORE of the story and another associated image / click image TOP of PAGE