Scientists discover first known animal that doesn’t breathe

Spores of the parasite H. salminicola swim under a microscope. Those alien “eyes” are actually stinger cells, one of the few features this organism hasn’t evolved away.
(Image: © Stephen Douglas Atkinson)

When the parasitic blob known as Henneguya salminicola sinks its spores into the flesh of a tasty fish, it does not hold its breath. That’s because H. salminicola is the only known animal on Earth that does not breathe.

If you spent your entire life infecting the dense muscle tissues of fish and underwater worms, like H. salminicola does, you probably wouldn’t have much opportunity to turn oxygen into energy, either. However, all other multicellular animals on Earth whose DNA scientists have had a chance to sequence have some respiratory genes. According to a new study published today (Feb. 24) in the journal Proceedings of the National Academy of SciencesH. salminicola‘s genome does not.

A microscopic and genomic analysis of the creature revealed that, unlike all other known animals, H. salminicola has no mitochondrial genome — the small but crucial portion of DNA stored in an animal’s mitochondria that includes genes responsible for respiration.

While that absence is a biological first, it’s weirdly in character for the quirky parasite. Like many parasites from the myxozoa class — a group of simple, microscopic swimmers distantly related to jellyfish — H. salminicola may have once looked a lot more like its jelly ancestors but has gradually evolved to have just about none of its multicellular traits.

“They have lost their tissue, their nerve cells, their muscles, everything,” study co-author Dorothée Huchon, an evolutionary biologist at Tel Aviv University in Israel, told Live Science. “And now we find they have lost their ability to breathe.”

That genetic downsizing likely poses an advantage for parasites like H. salminicola, which thrive by reproducing as quickly and as often as possible, Huchon said. Myxozoans have some of the smallest genomes in the animal kingdom, making them highly effective. While H. salminicola is relatively benign, other parasites in the family have infected and wiped out entire fishery stocks, Huchon said, making them a threat to both fish and commercial fishers.

When seen popping out of the flesh of a fish in white, oozing bubbles, H. salminicola looks like a series of unicellular blobs. (Fish infected with H. salminicola are said to have “tapioca disease.”) Only the parasite’s spores show any complexity. When seen under a microscope, these spores look like bluish sperm cells with two tails and a pair of oval, alien-like eyes.

MORE of the story and another associated image / click image TOP of PAGE