Introducing the light-operated hard drives of tomorrow

Credit: EPFL

What do you get when you place a thin film of perovkite material used in solar cells on top of a magnetic substrate? More efficient hard drive technology. EPFL physicist László Forró and his team pave the way for the future of data storage.

“The key was to get the technology to work at room temperature,” explains László Forró, EPFL physicist. “We had already known that it was possible to rewrite magnetic spin using light, but you’d have to cool the apparatus to—180 degrees Celsius.”

Forró, along with his colleagues Bálint Náfrádi and Endre Horváth, succeeded at tuning one ferromagnet at room temperature with , a proof of concept that establishes the foundations of a new generation of hard drives that will be physically smaller, faster, and cheaper, requiring less energy compared to today’s commercial hard drives. The results are published in PNAS.

A hard drive functions as a data storage device in a computer, where a large amount of data can be stored with an electromagnetically charged surface.

Nowadays, the demand for high capacity hard drives has increased more than ever. Computer users handle large files, databases, image or video files, using software, all of which require a large amount of memory in order to save and process the data as quickly as possible.

The EPFL scientists used a halide perovskite/oxide perovskite heterostructure in their new method for reversible, light-induced tuning of ferromagnetism at . Having a perovskite structure represents a novel class of light-absorbing materials.

MORE of the story / click image TOP of PAGE