Physicists Find No Evidence of Dark Matter Influence on the Force Between Nuclei

HD+ molecular ions (yellow and red pairs of dots: proton and deuteron; the electron is not shown) suspended in an ultra-high vacuum between atomic ions (blue dots), which are immobilized using a laser beam (blue). An electromagnetic wave (red-brown discs) causes the molecular ions to rotate. A further laser beam (green) records evidence of this excitation. The drawing is not to scale.
Credit: HHU / Alighanbari, Hansen, Schiller

The universe mainly consists of a novel substance and an energy form that are not yet understood. This ‘dark matter’ and ‘dark energy’ are not directly visible to the naked eye or through telescopes. Astronomers can only provide proof of their existence indirectly, based on the shape of galaxies and the dynamics of the universe. Dark matter interacts with normal matter via the gravitational force, which also determines the cosmic structures of normal, visible matter.

It is not yet known whether dark matter also interacts with itself or with normal matter via the other three fundamental forces — the electromagnetic force, the weak and the strong nuclear force — or some additional force. Even very sophisticated experiments have so far not been able to detect any such interaction. This means that if it does exist at all, it must be very weak.

In order to shed more light on this topic, scientists around the globe are carrying out various new experiments in which the action of the non-gravitational fundamental forces takes place with as little outside interference as possible and the action is then precisely measured. Any deviations from the expected effects may indicate the influence of dark matter or dark energy. Some of these experiments are being carried out using huge research machines such as those housed at CERN, the European Organization for Nuclear Research in Geneva. But laboratory-scale experiments, for example in Düsseldorf, are also feasible, if designed for maximum precision.

The team working under guidance of Prof. Stephan Schiller from the Institute of Experimental Physics at HHU has presented the findings of a precision experiment to measure the electrical force between the proton (“p”) and the deuteron (“d”) in the journal Nature. The proton is the nucleus of the hydrogen atom (H), the heavier deuteron is the nucleus of deuterium (D) and consists of a proton and a neutron bound together.

The Düsseldorf physicists study an unusual object, HD+, the ion of the partially deuterated hydrogen molecule. One of the two electrons normally contained in the electron shell is missing in this ion. Thus, HD+ consists of a proton and deuteron bound together by just one electron, which compensates for the repulsive electrical force between them.

MORE of the story / click image TOP of PAGE