Engineers Invented a New Way to Store Data Using Atomically-Thin 2D Materials Instead of Silicon Chips

(Click HERE for full view.) This illustrates how an experimental memory technology stores data by shifting the relative position of three atomically thin layers of metal, depicted as gold balls. The swirling colors reveal how a shift in the middle layer affects the motion of electrons in a way that encodes digital ones and zeroes.
Credit: Illustration by Ella Maru Studios

Researchers have invented a way to slide atomically-thin layers of 2D materials over one another to store more data, in less space and using less energy.

A Stanford-led team has invented a way to store data by sliding atomically thin layers of metal over one another, an approach that could pack more data into less space than silicon chips, while also using less energy.

The research, led by Aaron Lindenberg, associate professor of materials science and engineering at Stanford and at the SLAC National Accelerator Laboratory, would be a significant upgrade from the type of nonvolatile memory storage that today’s computers accomplish with silicon-based technologies like flash chips.

UC Berkeley mechanical engineer Xiang Zhang, Texas A&M materials scientist Xiaofeng Qian, and Stanford/SLAC Professor of Materials Science and Engineering Thomas Devereaux also helped direct the experiments, which are described in the journal Nature Physics. The breakthrough is based on a newly discovered class of metals that form incredibly thin layers, in this case just three atoms thick. The researchers stacked these layers, made from a metal known as tungsten ditelluride, like a nanoscale deck of cards. By injecting a tiny bit of electricity into the stack they caused each odd-numbered layer to shift ever-so-slightly relative to the even-numbered layers above and below it. The offset was permanent, or non-volatile, until another jolt of electricity caused the odd and even layers to once again realign.

“The arrangement of the layers becomes a method for encoding information,” Lindenberg says, creating the on-off, 1s-and-0s that store binary data.

To read the digital data stored between these shifting layers of atoms, the researchers exploit a quantum property known as Berry curvature, which acts like a magnetic field to manipulate the electrons in the material to read the arrangement of the layers without disturbing the stack.

Jun Xiao, a postdoctoral scholar in Lindenberg’s lab and first author of the paper, said it takes very little energy to shift the layers back and forth. This means it should take much less energy to “write” a zero or one to the new device than is required for today’s non-volatile memory technologies. Furthermore, based on research the same group published in Nature last year, the sliding of the atomic layers can occur so rapidly that data storage could be accomplished more than a hundred times faster than with current technologies.

MORE of the story / click image TOP of PAGE