Jetting Into the Dark Side: ATLAS’ Precision Search for Dark Matter

Figure 1: A monojet event recorded by the ATLAS experiment in 2017, with a single jet of 1.9 TeV transverse momentum recoiling against corresponding missing transverse momentum (MET). The green and yellow bars show the energy deposits in the electromagnetic and hadronic calorimeters, respectively. The MET is shown as the red dashed line on the opposite side of the detector.
Credit: ATLAS Collaboration/CERN

The nature of dark matter remains one of the great unsolved puzzles of fundamental physics. Unexplained by the Standard Model, dark matter has led scientists to probe new physics models to understand its existence. Many such theoretical scenarios postulate that dark matter particles could be produced in the intense high-energy proton–proton collisions of the LHC. While the dark matter would escape the ATLAS detector unseen, it could occasionally be accompanied by a visible jet of particles radiated from the interaction point, thus providing a detectable signal.

The ATLAS Collaboration set out to find just that. Today, at the International Conference in High-Energy Physics (ICHEP 2020), ATLAS presented a new searchfor novel phenomena in collision events with jets and high missing transverse momentum (MET). The search was designed to uncover events that could indicate the existence of physics processes that lie outside the Standard Model and, in doing so, open a window to the cosmos.

To identify such events, physicists exploited the principle of momentum conservation in the transverse detector plane – that is, perpendicular to the beam direction – looking for visible jets recoiling from something invisible. As events with jets are common at the LHC, physicists further refined their parameters: the events had to have at least one highly energetic jet and significant MET, generated by the momentum imbalance of the “invisible” particles. This is known as a monojet event – a spectacular example of which can be seen in Figure 1, a 2017 event display featuring the highest-momentum (1.9 TeV) monojet recorded so far by ATLAS.

A plethora of exotic phenomena, not directly detectable by collider experiments, could also have yielded this characteristic monojet signature. ATLAS physicists thus set out to make their study inclusive of several new physics models, including those featuring supersymmetry, dark energy, large extra spatial dimensions, or axion-like particles.

Today’s new result sets the most stringent limit on dark matter of any collider experiment so far – a milestone for the ATLAS Collaboration’s search programme.

Evidence of new phenomena would be seen in…

MORE of the story and another associated image / click image TOP of PAGE