New Fossil Ape Discovered in India Fills Major Gaps in the Primate Fossil Record

Field site in Ramnagar, India.
Credit: Christopher Gilbert

The 13-million-year-old gibbon ancestor fills major gaps in the primate fossil record.

A 13-million-year-old fossil unearthed in northern India comes from a newly discovered ape, the earliest known ancestor of the modern-day gibbon. The discovery by Christopher C. Gilbert, Hunter College, fills a major void in the ape fossil record and provides important new evidence about when the ancestors of today’s gibbon migrated to Asia from Africa.

The findings have been published in the article “New Middle Miocene ape (primates: Hylobatidae) from Ramnagar, India fills major gaps in the hominoid fossil record” in the Proceedings of the Royal Society B.

The fossil, a complete lower molar, belongs to a previously unknown genus and species (Kapi ramnagarensis) and represents the first new fossil ape species discovered at the famous fossil site of Ramnagar, India, in nearly a century.

Gilbert’s find was serendipitous. Gilbert and team members Chris Campisano, Biren Patel, Rajeev Patnaik, and Premjit Singh were climbing a small hill in an area where a fossil primate jaw had been found the year before. While pausing for a short rest, Gilbert spotted something shiny in a small pile of dirt on the ground, so he dug it out and quickly realized he’d found something special.

“We knew immediately it was a primate tooth, but it did not look like the tooth of any of the primates previously found in the area,” he said. “From the shape and size of the molar, our initial guess was that it might be from a gibbon ancestor, but that seemed too good to be true, given that the fossil record of lesser apes is virtually nonexistent. There are other primate species known during that time, and no gibbon fossils have previously been found anywhere near Ramnagar. So we knew we would have to do our homework to figure out exactly what this little fossil was.”

Since the fossil’s discovery in 2015, years of study, analysis, and comparison were conducted to verify that the tooth belongs to a new species, as well as to accurately determine its place in the ape family tree. The molar was photographed and CT-scanned, and comparative samples of living and extinct ape teeth were examined to highlight important similarities and differences in dental anatomy.

MORE of the story and 2 more associated images / click image TOP of PAGE