# Mystery of Strange Storms on Jupiter With Unusual Geometric Pattern Solved With Help From 19th Century Physics

### At the south pole of Jupiter lurks a striking sight—even for a gas giant planet covered in colorful bands that sports a red spot larger than the earth. Down near the south pole of the planet, mostly hidden from the prying eyes of humans, is a collection of swirling storms arranged in an unusually geometric pattern.

Since they were first spotted by NASA’s Juno space probe in 2019, the storms have presented something of a mystery to scientists. The storms are analogous to hurricanes on Earth. However, on our planet, hurricanes do not gather themselves at the poles and twirl around each other in the shape of a pentagon or hexagon, as do Jupiter’s curious storms.

Now, a research team working in the lab of Andy Ingersoll, Caltech professor of planetary science, has discovered why Jupiter’s storms behave so strangely. They did so using math derived from a proof written by Lord Kelvin, a British mathematical physicist and engineer, nearly 150 years ago.

Ingersoll, who was a member of the Juno team, says Jupiter’s storms are remarkably similar to the ones that lash the East Coast of the United States every summer and fall, just on a much larger scale.

“If you went below the cloud tops, you would probably find liquid water rain drops, hail, and snow,” he says. “The winds would be hurricane-force winds. Hurricanes on Earth are a good analog of the individual vortices within these arrangements we see on Jupiter, but there is nothing so stunningly beautiful here.”

As on Earth, Jupiter’s storms tend to form closer to the equator and then drift toward the poles. However, Earth’s hurricanes and typhoons dissipate before they venture too far from the equator. Jupiter’s just keep going until they reach the poles.

“The difference is that on the earth hurricanes run out of warm water and they run into continents,” Ingersoll says. Jupiter has no land, “so there’s much less friction because there’s nothing to rub against. There’s just more gas under the clouds. Jupiter also has heat left over from its formation that is comparable to the heat it gets from the sun, so the temperature difference between its equator and its poles is not as great as it is on Earth.”

MORE of the story and 2 more associated images / click image TOP of PAGE