Dark matter map reveals new filaments connecting galaxies

This animation shows the distribution of the dark matter, obtained from a numerical simulation, when the universe was about 3 billion years old.
(Image credit: The Virgo Consortium/Alexandre Amblard/ESA)

A new map of dark matter made using artificial intelligence reveals hidden filaments of the invisible stuff bridging galaxies.

The map focuses on the local universe — the neighborhood surrounding the Milky Way. Despite being close by, the local universe is difficult to map because it’s chock full of complex structures made of visible matter, said Donghui Jeong, an astrophysicist at Pennsylvania State University and the lead author of the new research.

“We have to reverse engineer to know where dark matter is by looking at galaxies,” Jeong told Live Science.

Related: The 11 biggest unanswered questions about dark matter

Dark matter is a mysterious, invisible substance that interacts with visible matter via gravity. Some researchers theorize that this invisible matter might consist of weakly interacting massive particles, or WIMPs, which would be very large (for subatomic particles, anyway) and electromagnetically neutral, so that they wouldn’t interact with anything on the electromagnetic spectrum, such as light. Another idea with some potential evidence to back it up is that dark matter might consist of ultralight particles called axions.

Whatever dark matter is, its effects are detectable in the gravitational forces permeating the universe. Mapping out an invisible gravitational force isn’t easy, though. Typically, researchers do it by running large computer simulations, starting with a model of the early universe and fast-forwarding through billions of years of expansion and evolution of visible matter, filling in the gravitational blanks to figure out where dark matter was and where it should be today. This requires major computing power and significant amounts of time, Jeong said.

MORE of the story and 3 more associated image’s / click image TOP of PAGE